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Compact three-dimensional +ED: A simple example of a variational calculation
in a gauge theory
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We apply a simple mean-Beld-like variational calculation to compact QED in 2+ 1 dimensions.
Our variational ansatz explicitly preserves the compact gauge invariance of the theory. We reproduce
in this framework all the known results, including dynamical mass generation, Polyakov scaling, and
the nonzero string tension. It is hoped that this simple example can be a useful reference point for
applying similar approximation techniques to non-Abelian gauge theories.
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I. INTRODUCTION

Study of the confining regime in @CD, as well as of
many other strong interaction phenomena, requires go-
ing beyond the perturbation theory. However, the ap-
plication of analytic nonperturbative methods in quan-
tum field theory is a very complicated and not too well-
developed area. This is especially true for non-Abelian
gauge theories. Recently we have formulated a gauge-
invariant variational approach and used a restricted vari-
ational ansatz to study the ground state of a pure Yang
Mills theory in 3 + 1 dimensions [1]. As with any new
technique, it is desirable to develop an intuition for it, by
first considering simpler examples.

A theory which possesses many common qualitative
features with /CD (such as confinement and dynami-
cal mass generation), and yet is much simpler and much
more tractable is compact electrodynamics in 2+ 1 di-
mensions. Moreover, this theory has been previously ex-
tensively studied by both analytical [2] and numerical [3]
methods. It seems therefore to be a perfect test ground
for the application of our variational method. This is
precisely the aim of this note. We will apply the gauge-
invariant variational approximation of [1] to this theory.
It is hoped that this toy calculation can teach us some-
thing about improving the variational ansatz for realistic
(3 + 1)-dixnensional non-Abelian theories. It is also a
nice exercise in itself, since it gives a vivid Hamiltonian
picture of Polyakov's monopole-instanton condensation
phenomenon, which to our knowledge does not exist in
the literature.

The paper is organized as follows. In the rest of this
section we discuss the Hamiltonian formalism for three-
dimensional compact /ED(QEDs). In Sec. II, we set
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up our variational ansatz and discuss some important
properties of the variational wave functionals. Section
III contains calculation of the expectation value of the
energy and solution of minimization equations. We also
show that the Wilson loop in the best variational state
has the area law and calculate the string tension. In
Sec. IV, we discuss our results and the interpretation of
our calculation &om the point of view of Polyakov's di-
lute monopole gas approximation to Euclidean partition
function.

The theory is defined by the Hamiltonian

The field 6 is somewhat different &om the usual magnetic
field B = e;~O, A~. We will explain its definition in a short
while. All the physical states should satisfy the Gauss law
constraint

(1.2)

One should note that there is a crucial difference be-
tween the Gauss law in the compact theory and in the
noncompact one. In the noncompact theory equation
(1.2) should be satisfied only for regular functions A. For
example, the operator

v(x) = exp — d y
" 's;(y))I,

g (*—y)'

which has the form of (1.2) with the function A propor-
tional to the planar angle ()), A = (1/g)g(x), does not act
trivially on physical states. In fact, this operator creates
pointlike magnetic vortices with magnetic fiux 2a/g [4]
and therefore changes the physical state on which it is
acting.

In the compact theory the situation in this respect is
quite different. Pointlike vortices with a quantized mag-
netic fiux 2mn/g cannot be detected by any measure-
ment. In Euclidean path-integral formalism of [2] this
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V'( )&(~)V(*) = &(~) + ~'(* —~) (1.4)

The Hamiltonian should therefore contain not B but
rather only its singlet part. This is the meaning of the
field b in Eq. (1.1). Formally

b =PBP,
where P is the projection operator on the whole compact
gauge group, which includes V(z). This form is conve-
nient for the purposes of the present calculation, and we
therefore do not write down a more explicit expression
or' b

II. THE VARIATIONAL ANSATZ

Our aim in this paper is to find a vacuum wave func-
tional of this theory. Following Polyakov, we will be

I

is the statement that the Dirac string of the monopole
is unobservable and does not cost any (Euclidean) en-

ergy. In the Hamiltonian formalism this translates into
the requirement that the creation operator of a pointlike
vortex must be indistinguishable &om the unit operator.
In other words, the operator (1.3) generates a transfor-
mation which belongs to the compact gauge group, and
should therefore act trivially on all physical states. Equa-
tion (1.2) should therefore be satisfied also for these op-
erators.

Accordingly, the Hamiltonian of the compact theory
also must be invariant under these transformations. The
magnetic field defined as B = e;~0;A~, on the other hand,
does not cominute with V(z):

working in the weakly coupled regime. Since the cou-
pling constant g in 2+ 1 dimensions has dimension of
mass, weak coupling means that the following dimension-
less ratio is small:

g
2

A
(2.1)

@[A;] = exPl ——f d xd*yA;(x)G, '(T —y)A, (y)

(2.2)

Gaussian variational approach in this case should give a
good approximation. An important caveat, however, is
that the ground-state WF should be gauge invariant un-
der the full compact gauge group. As a result it turns
out that one cannot take just a Gaussian in A.;, since this
will not preserve gauge invariance. The simplest gener-
alization of the Gaussian ansatz which we use along the
lines of [1], is to project a Gaussian WF into the gauge-
invariant subspace of the Hilbert space. We therefore
take as our variational ansatz the set of states

Here A is the ultraviolet cutoff in the momentum space,
which as always has to be introduced to regularize a
quantum field theory. 2 For a weakly coupled theory one
expects the vacuum wave functional (VWF) to be not
too different &om the vacuum of a &ee theory. Since the
VWF of free (noncompact) electrodynamics is Gaussian
in the field basis,

4'[A;] = f DgexpI —— d Td y A;(T) ——8;P(x) G (T —y) A;(y) ——8;g4(y)
1 2 2 —1 1
2 g g

(2 3)

The functional integral is over the phase function P(z), and correspondingly the derivatives of P in the exponential are
understood modulo 2vr. That is, these derivatives do not feel quantized discontinuities in P(z). The mathematically
more precise way to write this is to substitute 8;P(z) by exp( —i()) (z))8;exp(i(t (z) ). We will use however, the above
shorthand notation for convenience. The simple rotational structure of G;~ = b;~G that appears in the variational
wave functional (2.3) is consistent with perturbation theory, as discussed in [1].

The ansatz (2.3) depends on one function G(z). We now have to calculate the expectation value of the energy in
this state, and then minimize it with respect to G(z).

Before proceeding with the calculation we make the following (obvious) comment. The trial wave functional (2.3)
has a simple interpretation &om the point of view of states of a noncompact theory. To see this let us rewrite the
functional measure DP in a slightly difFerent way. Any angular function P(z) can be parametrized as

&(z) = &(z) + &-(z) (2.4)

where P(z) is a smooth function and P„(z) contains all the discontinuities and can be written as

In the standard Euclidean lattice formulation of the theory the potential energy has the form cos(ga B), where a is the
lattice spacing. This obviously has the same property as b, that is invariant under the transformation Eq. (1.4) and reduces
to it in the weak-coupling limit. Our definition, Eq. (1.5), is equivalent to the Villian form of the action.

If one considers compact U(1) as an unbroken sector of the spontaneously broken SU(2) (Georgi-Glashow model), the
ultraviolet cutoK A will be proportional to the scale of the symmetry breaking. To be more precise, it is of the order of
magnitude of the charged vector boson mass M~.
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(2.5)

and 8(z —z ) is a polar angle on plane with a center at z . The functional measure can be written as

(2.6)

where in the last equality we have just substituted integration over the coordinates of vortices and antivortices for
summation, and for this reason introduced explicit UV cutoff A. We also introduced term with n, + ——n = 0
corresponding to the absence of vortices.

Let us de6ne the function

1 1 —1 1
y[A] = Ddexp —— d ed y A;(x) ——8;d(x) 0 (x —y) A;(y) ——Bd(y),

2 g
(2.7)

which differs from 4 in that the integration is performed
only over continuous gauge functions P. Obviously, 4' is
invariant under noncompact gauge group, and therefore
belongs to the Hilbert space of the noncompact theory.
When acting on it, the vortex operator V(z) defined in
(1.3) just shifts A;(y) by (1/g)8, 8(z —y). We have there-
fore the following representation for 4'[A]:

and the minimization of the vacuum expectation value of
energy.

III. THE ENERGY' MINIMIZATION

Let us for convenience introduce the notation
@[A] = )

n+, n =0 a=1 P=1
V(z )V* (z&)4 [A] . (2 g) 1

A~(z) = A;(z) ——8;P(z) . (3.1)

This representation makes explicit the fact that a WF
of the compact theory is constructed from a WF of the
noncompact theory by taking a superposition of arbitrary
number of vortices and antivortices at every point. This
superposition is obviously invariant under multiplication
by a vortex operator and therefore is its eigenfunction
with eigenvalue 1. Having noted this, we now proceed to
calculation of expectation values in the trial state (2.3)

AMA;= dxdyA;xMx —yA;y (3.2)

The expectation value of any operator in the WF (2.3)
is calculated as

We will also switch to the matrix notations in the follow-
ing, so that

(0) = y fDd'Dd"DA;exp( —A,. G Ay )0(A)exp( —-—A,. G A,. ) . (3 3)

Here Z is the normalization factor, which is just the norm of the trial wave functional (2.3). Further, if the operator
II0 is explicitly gauge invariant, we may shift the integration variable A; ~ A,-, and reduce this expression to

(0) = Z fDADyDA;exp( — AeG A) e(0—)Ae x(p—eA;G A;),

where we have defined P = P' —P" and q = P'+ P". The integral over q is trivial and just gives the volume of the
gauge group. Since the same integral exactly enters Z, it always cancels between the numerator and denominator,
and we shall omit it in the following.

As a 6rst step let us calculate the normalization factor Z:

Z — D DA exp ~ A~+ ~A~ + AQ (3.5)

The integration over A, is Gaussian and can be trivially performed. The integral over the noncompact part of the
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gauge group P is also Gaussian. Then

with

Z = Z~ZQZ~ (3.6)

Z = det(mG),

1 ~ 1
Dgexp — 8;PG 8;P = det 4irg —G

4g2 a2

D ~exp — gq ~Q

- 1/2

(3.7)

Using Eqs. (2.5) and (2.7), one can represent Z„as a partition function of the gas of vortices:

Z„=
n+, n =0 m=1 P=&

i

�~
dz dzpz"++ exp —— ) D(z —z, ) y ) D(zp zp, ) ) D(z zp (3 8)

i

The vortex-vortex interaction potential D(z) and the
vortex fugacity z are given by

The exponential factor in Eq. (3.9) (including the factors
of fugacity) can then be rewritten as

2

D(z) = 8ir —G (k)cos(kz),
2vr 2 k2

p2(~++~-) Dyexp —2g gD iy + spy (3.12)

l
z = A exp ~

— D(0)

(3 9) The summation over the number of vortices is trivial and
gives

Z = Dy exp —2g yD
Here G(k) is the Fourier transform of the variational
"propagator" G(z).

Formula (3.8) reminds one of Polyakov's partition
function of the inonopole gas [2]. One should keep in
mind, however, that the physical meaning of it is quite
difFerent. The gas described by Eq. (3.8) is two dimen-
sional and not three dimensional, and the interaction be-
tween the particles is not Coulomb, but rather depends
on the variational function G. Nevertheless, it has a def-
inite relation with Polyakov's gas of monopoles and we
will discuss this point in the last section of the paper.

Since D(0) is singular, the last equation should be un-
derstood, as usual in the regularized sense, that is at
finite UV cutofF, D(0) should be substituted by D(z =
1/A). Note that the variational function G explicitly ap-
pears in the vortex-vortex potential. Since we expect the
UV behavior of G(k) to be the same as in the free theory
[G (k) ~ k], we have

z
cosg = (cosg)p '. cosg:= ' cos+:

A2
(3.15)

(3.13)

To calculate the correlator of p one can add ipJ to the
vortex &ee energy, and calculate functional derivatives of
the resulting partition function with respect to J at zero
J. A simple derivation gives

(p(z)p(y)) = 4g D (z —y) —16g (D y(z)D y(y)) .

(3.14)

The propagator of y is easily calculated. At weak cou-
pling z is very small, and all our calculations will be
performed to first order in z. To this order the only con-
tribution comes &om the tadpole diagrams. This is easily
seen by rewriting the cosine potential in Eq. (3.13) in the
normal ordered form3

z=A exp
2g i

(3.10)

In the following we will need to calculate correlation
functions of the vortex density. To facilitate this we use
the standard trick [2,5] to rewrite the partition function
Z„ in terms of a path integral over a scalar Beld y. Let
us introduce the vortex density p(z):

( ( ) (0)) = 1
4g D (k)+2z
D(k) D2(k)
4g2 8g4

Therefore, to Grst order in z,

(3.16)

p(*) = ) .[~(z —z-) —~(z —zp)] .
a,P

(3.11) The normal ordering is performed relative to the free theory
defined by the quadratic part of the action in Eq. (3.13).
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The correlator of the vortex densities is then

K(8) = f rt*xr' (p(x)p(0))

= 2m+ O(z') (3.17)

and in this approximation does not depend on momen-
tuxn, the k dependence will appear in z and higher-order
terms.

Now we are ready to calculate the expectation value of
the Hamiltonian (1.1). First, consider the electric part

xE~ = — d x

= Z D DA;exp —2A,. G A, 2 trG —A;G A; exp —zA;G A;

= trG — Zp Z„' DP(8, QG e8;8)exp — 8;r)rG 8;8I
1 —1 —1 —2

4g2 4g2
(3.18)

Performing the Gaussian integration over P, this reduces to

d2k

d2k 2m dk
(3.19)

Let us note that it is only because of vortices one has negative contribution to the electric part of the energy.
Now for the magnetic part. Since 6 is the singlet part of B,by definition in every gauge invariant state (6 ) = (B ).

We will therefore calculate (B2). Here one should be a little careful. Since B itself is not gauge invariant, one cannot
use Eq. (3.4), but rather explicitly keep both integrals, over P and g:

(t)=Z JD8'D8"DABex (——[APG A~+AUG A~))

(g —1 D D DA exp( —
2 [A~G Af + A;G A;]), (3.20)

where the factor Z contains an extra factor of the volume of the gauge group relative to Eq. (3.5), and as previously

P = gV —P" and q = P'+ P". The linear term in g vanishes due to the symmetry of the measure under transformation
g ~ —g. The term quadratic in g is independent of the variational parameter G. It does not contribute to the
minimization equations, and we omit it in the following. We therefore obtain

(8 ) = Z fDADrtDA; er8; Ar ——tt I exp( —e[A,. G A,. + A;G A,])

1=Z DA e;~O, A~ exp —AG A, = — d kk Gk (3.21)

This is the same result as in the noncompact theory. In fact, this is precisely what one expects, since a compact
state 4 difFers &om a noncompact one, @ only by the presence of vortices, but 6 by definition should not feel their
presence.

Summarizing, we have the following expression for the expectation value of the energy density:

d2k 4m
(3.22)

The minimization equation is

b~ d'
—[k' —G '(k)]+ —, 2zk 'G '(k) —4~', p 'G '(p) =O. (3.23)



51 COMPACT THREE-DIMENSIONAL QED: A SIMPLE EXAMPLE. . . 1953

From Eq. (3.10) one finds

b~
k G (k)z . (3.24)

which in case of weak coupling A/g &) 1 can be simpli-
fied as

Assuming perturbative behavior of G at large mo-
menta [G(k) ~ k i], the ratio of the fourth term in Eq.
(3.23) to the third term is of order

m = m exp
g q

2g )
(3.30)

b'z f d'pp 2G '(p) A'

hG(k) 2zk —2G—s(k) g2k
(3.25)

At weak coupling this is much greater than one for any
value of momentum. We can therefore omit the third
term from Eq. (3.23) and get a very simple equation for
G ~(k),

and because m &( g (( A one indeed could neglect the
m dependence on the right-hand side of Eq. (3.29). It is
clear that m is precisely the mass gap of the theory. Cal-
culating, for example, the propagator of magnetic field,
we find

4~4 d pk —G (k) = k G (k) G ( )
g 2K 2p

d xe'" (b(x)b(0)) = -'(k + m2)i~22 i (3.31)

with the solution

I4
G (k) = „

where

(3.26)

(3.27)

Note, that the dynamically generated mass we obtain in
our approxixnation agrees with Polyakov's result [2].

Perhaps the most interesting question is whether our
best variational VWF is confining. To answer this ques-
tion we calculate the expectation value of the Wilson
loop:

4~4 d'k" " k-'G-'(k) .
g4 (2') 2 (3.28)

Using Eqs. (3.10) and (3.27) we get the equation for mass

Wc = exp ilg A;dx;
~c

exp~ ilg BdS
S

(3.32)

4~4
m = -A expg' ( g' (2~)' gp2+ m2y

d k k

(27r)' k' + m' ' (3.29)

where l is an arbitrary integer and the integral is over
the area S bounded by the loop C. We have written B
rather than b, since this exponential operator is invariant
under transformations B(x) ~ B(x) + 2m/g, generated
by the vortex operator:

1 ~ . l
lV~ = Za DAiexp AiG Ai + ilg Eij ~iAj d x Z~ Zv D exp —

2 Bi G Bi + & i dxi ~

(3.33)

The first factor in weak coupling is simply

l2
R'0 ——exp ——g BxBy d xd y

2
Q

(3.34)

This term therefore leads to the area law behavior and
gives the string tension

where the integral over both x and y is over the area S.
In the limit of large S the leading piece in the exponential
1s

l2 k2 l2—g S lim —G(k) = —g mS .
2 A~0 2 4

and we see that area law Wp exp( —OS) is a direct
consequence of the nonzero mass gap m.

The second factor in Eq. (3.33) is different Rom unity
only for odd l, since $8;Pdl, = 2vr(n+ —n ), where n+
(n ) is the number of vortices (antivortices) inside he
loop. For odd l it can be easily calculated:

R'„= exp iver pxd x
s )

Dyexp —2g yD

l2g= —gm
4

(3.36) + 2A cos+ x —Q! x (3.37)
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where n(x) is the function, which vanishes for x outside
the loop, and is equal to vr for x inside the loop. At small
coupling this can be calculated in the steepest descent
approximation. The solution to the classical equations
which contributes to the leading-order result is y(x) = 0.
For this solution,

W„= exp( —4zS), (3.38)

where we again used the normal ordering prescription as
in (3.15). Clearly this is a subleading correction to string
tension (3.36), since z oc mz and

z/g m - Qz/Az - exp( —~A/4g ) (& 1 .

With this exponential accuracy, the string tension is
therefore given in our approximation by Eq. (3.36).

IV. DISCUSSION

We have presented a simple variational calculation in
the compact QEDs. Our variational ansatz was the di-
rect adaptation of the ansatz of [1] to this theory. The
trial wave functionals are explicitly gauge invariant un-
der the compact gauge group. The integration over the
gauge group is directly responsible for nontrivial depen-
dence of the energy expectation value on the variational
parameters, which leads to the generation of scale in the
best variational state. The correlators and the Wilson
loop calculated in the best variational state agree with
known results.

It is illuminating at this point to interpret our calcula-
tion &om the point of view of the three-dimensional Eu-
clidean path integral. The vacuum wave functional of the
theory can be represented in path-integral formalism. To
get the vacuum WF @[A] one should calculate the path
integral over the fields A(x, t), with t varying from —oo
to 0, with the boundary condition A(x, t = 0) = A(x).
To be more precise, in calculating VEV of some opera-
tor O(t = 0), one should split the time coordinate of the
plane with the time coordinate of the operator, so that
one considers 4'[A(x, t = —e)] and @*[A(x,t = e)] in the
limit e m 0.

The basic objects that appear in the Euclidean path
integrals are monopoles, which in 3D are not propagat-
ing particles, but rather instantons. When described
in terms of the vector potential, or noncompact field
strength, a monopole has a Dirac string attached to it.
It is clear that the vortices (antivortices) of the gauge
function P(x), in Eq. (2.3) correspond precisely to the
intersections of the Dirac strings of the three-dimensional
(3D) monopoles (antimonopoles) with the equal time
plane at t = 0. The positions of the Dirac strings are
not physical in the compact theory, and only the posi-
tion of the monopole itself is gauge invariant. In fact,
for all monopoles that do not sit in the infinitesimally
thin time slab between the planes t = —e and e, one can
always choose the direction of the Dirac string such that

it does not intersect the two planes. This precisely cor-
responds to expression equation (3.4). The combination
that enters this path integral nontrivially is P = P' —gV'.

At the points, where both functions P'(x) (which corre-
sponds to 4') and P"(x) (which corresponds to 4*) have
a vortex, P(x) is regular. This is the situation, when a
Dirac string intersects both planes t = +e. When a 3D
monopole sits in the slab, only one of the functions P' or
P" has nonzero vorticity, and so does P. The integration
over P(x) in Eq. (3.4) can be interpreted therefore as the
direct contribution to the expectation value due to the
monopoles at precisely the time t = 0.

The fact that in this way one sees directly only the
monopoles at t = 0, does not mean of course that other
monopoles are not taken into account in this approxima-
tion. Indeed, the "bare" interaction potential between
the t = 0 monopoles is D(x) of Eq. (3.9). In the best vari-
ational state it is already short range, as follows from the
solution for G(k) [see Eq. (3.27)]. This is in accordance
with the 3D picture, that the 3D monopole gas produces
screening. Obviously, if one only looks at the thin slab,
every monopole there will have an antimonopole part-
ner, which sits nearby (inside the screening length) in
the third direction. The 2D monopole gas will therefore
be screened by the 3D interaction, even before the inter-
action of the 2D monopoles between themselves is taken
into account. This is perfectly consistent with our cal-
culation. It is interesting to note, that even though this
2D interaction produces additional screening [the cosine
term in the efFective theory (3.13)], it is the 3D screen-
ing that is responsible for the area law of the Wilson
loop, as is clear &om the calculation of the string tension
in (3.34). In fact, if one takes for G(k) the noncom-
pact expression, both the leading part Ws, Eq. (3.34),
and the subleading part W„, (3.37), have the perimeter
law behavior. The string tension in Rp vanishes, be-
cause in this case limy~o k G(k) = 0. In W„ in this case
D (k = 0) = 0, and for large loops the classical equa-
tions of motion, which follow from Eq. (3.37), apart &om

y = 0 have another solution, which leads to the perimeter
dependence of W . The existence of the cosine term in
the interaction (which appears due to the 2D screening)
does not preclude the existence of this extra solution.

Finally, we note that the calculation presented here can
be extended to compact @ED in 3+1 dimensions. In this
case the vortex gas part of the partition function will be
replaced by the gas of vortex loops with the interaction
between the loop elements dependent on the variational
function G. It is well known that compact QED4 has
a phase transition at a finite coupling constant. There
is a good chance that this phase transition will be seen
in the present approximation. Consider variational func-
tions G, for which cPG is short range, as in Eq. (3.27).
The interaction between the strings is then short range.
In this case the standard energy vs entropy argument is
telling us that at large g the strings are condensed. The
string gas contribution to the vacuum energy will then
be sizable. Since this contribution has a negative sign,
this situation will be energetically favored. Therefore at
large g2 one expects the best variational state to have
a short ranged 0 G, and therefore the mass scale will
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be generated dynamically. At small g the vortex rings
do not condense even for short-range interaction between
them. Their contribution to the vacuum energy will be
negligible, and one expects that the best variational vac-
uum will be determined by the contributions &om the A,.
and P integrals, which will lead to the same solution as
in the noncompact theory.

Note added in proof. After this paper was submitted
for publication we learned about Ref. [6], where a similar
variational calculation was applied to the lattice formula-
tion of the compact QEDs. Our results agree with those

of [6]. We thank Ben Svetitsky for bringing this reference
to our attention and for interesting correspondence.
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